
AISG Vulnerability
Dossier

AISG-12-000

September 5, 2012

<dtrammell@americaninfosec.com>
http://www.americaninfosec.com/

CONFIDENTIAL

AISG Vulnerability Dossier: AISG-12-000

AISG-12-000 Webmin Privileged Remote Code Execution

Vulnerability Information

Vulnerability Class Input Validation
Affected Versions Tested 1.580
Affected Versions Assumed
Unaffected Versions
Affected Platforms Tested 1: x86-32 Ubuntu Linux 11.10

2: x86-32 Solaris 11.11
3: x86-64 Solaris 11.11
4: x86-32 FreeBSD 9.0

Affected Platforms Assumed All Vendor-supported Linux
All Vendor-supported Solaris
All Vendor-supported BSD

Unaffected Platforms
Reliability Rating Completely (100%)

Vulnerability Test Matrix

1 2 3 4
1.580 V V V V

Exploit / Proof-of-Concept Information

Supported Targets 1.580 on x86-32 Linux
1.580 on x86-32 Solaris 11.11
1.580 on x86-64 Solaris 11.11
1.580 on x86-32 FreeBSD 9.0

Attack Vector Remote
Exploitation Impact Code Execution*
Exploitation Context root
Exploitation Indicators File creation on the filesystem

Repeat code execution**
Prerequisites Successful Authentication
Reliability Rating Completely (100%)
Development Status Complete
Development Phase Metasploit Exploit
Development Goal Metasploit Exploit
Exploit Features Triggerable Execution Persistence**

* Successful exploitation allows execution of any perl library or executable residing on the system.
** After successful exploitation, the exploitation trigger and payload remain resident on the system and
may be repeatedly triggered.

September 5, 2012 Page 1 of 4

AISG Vulnerability Dossier: AISG-12-000

1 Overview

An input validation flaw allows for authenticated users to execute arbitrary Perl statements, commands,
or libraries by parsing any file provided.

2 Impact

Privileged arbitrary code execution as the root user is achievable by leveraging this vulnerability.

3 Technical Explanation

When user input for the CGI variable “type” is passed into /status/save mon.cgi it is assigned the name
“$serv->{’type’}” and “${type}” in the underlying scripting language, as shown in Code Excerpt 1.

Code Excerpt 1 CGI “type” Variable

if ($in{’type’}) {

$serv->{’type’} = $in{’type’};

Later ${type} is reassigned within statuslib.pl as “${t}” and used within a filename in a “do” statement
without any validation of the user input, as shown in Code Excerpt 2.

Code Excerpt 2 Unvalidated User Input in “do” Statement

local $t = $_[0]->{’type’};

...

else {

do "${t}-monitor.pl" if (!$done_monitor{$t}++);

local $func = "get_${t}_status";

Perl treats null bytes as regular characters whereas the underlying C functions used by Perl to perform
the opening of files treat null bytes as terminators. By using a poison null byte it is possible to cause the
underlying C functions to open and read an arbitrary file. An example of this would be index.cgi reading
the data/filename (“/tmp/environ”) and additionally passing a null byte at the end of the arbitrary
filename. The complete filename as Perl interprets it then becomes “/tmp/environ%00-monitor.pl”.

The underlying C functions interpret the null as a terminator and open “/tmp/environ” instead of
“/tmp/environ%00-monitor.pl”. The data from that file is then passed into the Perl interpreter and
inserted into a “do” statement.

save mon.cgi causes the arbitrary filename to be saved into configuration variables under
$webminroot/etc/status/services/<epochtime>.serv, as shown in Code Excerpt 3.

September 5, 2012 Page 2 of 4

AISG Vulnerability Dossier: AISG-12-000

Code Excerpt 3 save mon.cgi Configuration Variables
runon=0

depend=

ontimeout=

remote=*

email=

ondown=

clone=

onup=

tmpl=

fails=1

desc=Alive System

groups=

type=/tmp/environ\^@

id=1331832761

notify=snmp sms pager

nosched=0

This file is then parsed by /status/index.cgi which utilizes the service table method as shown in Code Ex-
erpt 4 to read all service files from /etc/webmin/status/services and subsequently calls the service status
method within the status-lib.pl library. The filename information is parsed and passed into the ser-
vice status method as ${t}. The variable ${t} is passed into a “do” statement within status-lib.pl, as
shown in Code Excerpt 5.

Code Excerpt 4 /status/index.cgi: service table Function

if ($config{’index_status’}) {

@stats = &service_status($s, 1);

Code Excerpt 5 status-lib.pl: service status Function

do "${t}-monitor.pl" if (!$done_monitor{$t}++);

In Perl, “do” can be passed a block or group of statements to be parsed or a subroutine; however, it
may also be passed a filename. When passed a filename such as “do ’filename.pl’ ” the underlying Perl
interpreter treats it as though the filename had been passed to an eval() method.

Therefore, because the arbitrary data is being assigned to variable “$t” and passed as part of a filename
within a “do” statement without any input validation it is possible to insert arbitrary data into that
filename. This allows an attacker to tell the Perl interpreter to open and eval() an arbitrary file. For
example, when index.cgi parses the “type” variable from the saved configuration file the “do” statement
may become as shown in Code Excerpt 6. This is equivalent to the statement “eval ’/tmp/enviroń’’ and
causes all lines in /tmp/environ to be interpreted and executed by the Perl interpreter.

Code Excerpt 6 index.cgi Example

do "/tmp/environ%00-monitor.pl";

September 5, 2012 Page 3 of 4

AISG Vulnerability Dossier: AISG-12-000

It should be noted that the same vulnerability with variable “$type” exists within save mon.cgi ; however,
directory traversal (appending one or more ’../’s) must be utilized to exploit the vulnerability in that
location.

September 5, 2012 Page 4 of 4

	Webmin Privileged Remote Code Execution
	Overview
	Impact
	Technical Explanation

